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SMALL BENDING AND STRETCHING OF SANDWICH-TYPE SHELLS

By ERIC REISSXER

SUMMARY

A i.heoy ha-s been dewloped for small bending and stretching
of sandwich-type shells. This theory is an extension of the
known theoy of homogeneous thin elastic shells. It was found
that two efects are important in the present problem, which are
not normally of importance in the theoy of curved shells: (1)
Z!% e$ect of tranwerse shear defomtion and (2) the e$ect of
transverse normal stress deformation. The fhwt of these two
e~ects has been known to be of importance in the theory qf plates
and beams. The second efect was found to occur in a manner
u~hichis typical jor shells and hag no cmunterpa.rtin jlai~plate
theory.

The general results of this report hare been applied to the
solution of problems concerning $at plates, tircwlar rings,
circular cylindrical shells, and spherical shells. In each case
numerical examples have been g“wn, Wustrati-n.g the magnitude
of the effects of trarwerse ghear and normal stress deformation.

T7M results of thi~ investigation indicate the n+wessity of
taking account oj transverse shea~ and normal stress in sandwich-
type shells, as soon as there is an Order-of+nagnitude diJerence
between the elastic constants of the. core layer and of the face
layers oj the composite shell. It was found that the changes due
to tra,nwerse shear and normal stress deformation {n the core
may be so large as to be no mere corrections to the results of the
theory w“thout tranwerse core jlem”bility.

The actual magnitude of the changes is greatly dependent an
the geometry and loading condition of the s%rueture wuler con-
sideration so that no general rules may be giren which indicate
for which elastic modulus ratio the changes begin to be tign-rij$cant.

Solutions of prob[ems in the present theory may in general be
obtained by mathematical methods which are timilar to those
employed in the theory of plates and shells without the e~ect of
tra-nscerse shear and normal stress deformation included. Tle
present work does not include consideration of buckling and
finite de$ection ej$ects.

INTRODUCTION

h this report an extension of the classical theory of smaIl
bending and stretching of thin elastic shells is consiclerecl.
Instead of a homogeneous shell, investigation is made of a
shell constructed in three layers: A core kyer of thickness h
with elastic constants E., G., and VCand two face layers of
thickness t -with elast,ic constants E’r, Gf, and VJ. In the
developments certain restrictive assumption are made which
somewhat knit the general applicability of the results. In
so doing formulas are obtained which are as compact as

possib~e-whiIestilI describing the essential characteristics of
the sandwich-type shell.

The thickness ratio t/h is assumed small compared with
unity; at t-hesame time the ratio Efl/EJi is assumed large
comparecl with unity. This latter assumption means that
the face material is so much stifkr than the core material
that the contribution of the core layer to stress couples and
tangential stress resultants of the composite shall is negli-
gible. It is known that. for flat p~ates these assumptions
necessitate the taking into account of the effect of transverse
shear deformation. (See, for instance, reference I.) The
same -would be expected to be true for cm-red shells, and the
present report., therefore, gi-res a system of equations in
which this effect is incorporated.

A further effect which, it appears, has not, been considered
previously in the analysis of sma.Udeflections of sandwich
st.ruct.uresis the M ect of transverse nornd stress deforma-
tion. In the present report it is show-nthat this effect tirises
in a manner which is typical for shells and has no counterpart.
in plate t:heory. It maybe likened, roughly, to what happens
in the bending of curved tubes.

The process by which the general resdts of this report are
obtained is a.sfollows: First, each of the face layers of thicli-
ness t is assumed to behave like a thin shell -ivit.boutbending
stiffness. The loads appliecl to these face shells, henceforth
called face membranes, are of two kinds: (1] E.sternal loacIs
and (2) loads caused by the stresses in the core la-yer. Areti.,
the core layer of thiclmessh is assumed to behave like a three-
dimensional elastic continuum in -which those stresses -ivhich
are paralle~ to the faces are negligible compared -with the
transverse shear and normal .st,reases. On t-hebasis of these
two assumptions three steps are carried out. First, t-he
equilibrium equations of the core layer and of the face la,yers
are obtained. Then an appropriate expression for the strain
energy of the composite structure is derived. l?inalIy, Castig-
liano’s theorem of minimum complementary energy is used to
obtain therelationswhich connectstrees resultantsand couples
of the composite shell with the quantities -whichclescribe.the
state of deformation of the composite shell.

The system of equations which is obta.ineclin the foregoing
manner

(1)
(2)
(3)
[4)

is specialized for the following cases:
Fiat pla-te
Circular ring
Circular cylindrical sheH
Spherical shell with axisymmetrical cleformation
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In each case a number .of problems are solved explicitly and
the appreciable effect of transverse shear aJ@or normal stress
deformation is illustrated numerically.

This work ‘was conducted at the Massachusetts Institute
of Technology under the sponsorship and with the financial
assistance of the NTationalAdvisory Committee for Aero-.

.

SYMBOLS

core-layer thickness
face-layer thickness
curvilinear coordinates on midclle surface of com-

posite shell
distance coordinate measurecl along normal to

micklle surface of shell
coefficients of linear element on midclle surface of

shell
principal radii of &rvaliure of middle surface of

shell
direct stress resultants in upper face membrane;

n=l J2;m=l,2 .
direct. stress rcsdtants in_lower face. mernb~?ne
tangential components of external load intensity

on upper and.lower membra.ncs
normal components of externcd loacl intensity on

upper ancl lower membranes
components of transverse shear stressin core layer
component of transverse normal stressin core layer
values of transverse shear .sj.resses..for f= 4 h/2;

n=l,z
values. of transverse normal stressesfor f=-+ h/2
values of transverse,shear stresses a.tmicld~esur-

face of shell
transverse shear strem resultants
direct stress resultants parallel to middle surface

for composite shell; n=l,2; m=l,2
stress couples for composite shelI; n= 1,2; m= 1,2
tangential components of external load intensi~y

for composite shell; n= 1,2
normal component of external

composite shell
external load intensity term

tion (22)
strain energy

load intensity for

defined by equa-

elastic mo~-uli of isotropic face-layer material;“
v= Vf

elastic moduli in transverse direction of core-layer
material

effective tangential components of displacement
of elements of composite shell

effective normal component of displacement of
elements of composite shell

effective components of change of elope of normaI
to middle surface of composite shell

E$n’ component of strain (q~ = CTrJE,)
C*= 2t.Ef
D*=(l/2)t(h+t)2Ej
c=c*/(1–#)
D bending stiffness factor (D=”D*/(1 – v?)

$) Y Cartesian coordinates in plane of flat.plate

polar coordinates in plane of flat plate
radius of circular ring, cylindrical shell, and spher-

ical shell
surface coordinates on cylindrical shell
pmamete.rsdefined by cqua,tion (63)

half wave length of sinusoickl load distribution
quantities defined by equation (197)
complex quantity defined by equation (200)
surface coordinates on spherical.shell
qu?ntit y defined by equation (74)
parameter defined by equation (190)

I—GENERALTHEORY

STATICSOF SANDWICH-TYIWSHELL

In order to derive a complete system of equations for the
sheII composed of face layers and core layers it is necessary
first to consider separately the statics of the face luyers and
that of the core layer of the shell. Combination of the results
ob@ned for these two components of the composite strut.turc
must and will lead to those diffe.rentia.lequations of equilib-
rium which hold for elements ‘of a shell, whether this shell
is of homogeneous or nonhomogeneous construction. In
ad”dition,however, relations are obtained wKlch arc chmac-
teristic of the sandwich-type shell.

Coordinate system on shell.-A curvilinear coordim.te
system (~1,~2,f) is introduced as follows: Let & and & lx
coordinates on the midclle surfme of the composite SIUJ1laml
let ~ be the distance of a point of the shell from its midclk
surface, measured along the normal to the middle surfmc.
In order that this system of coordinates be an ort-hogonnl
system, choose the &l,& curves as lines of curvature on the
middle surface (in the case of shells of revolution the linw
of curvature are identical with the meridians and parallels
on the middle surface).

The linear element in the forgoing system of coordina( cs
is of the form

where al and az are the coefficients of t.hc linear clcmcut on
the middIe surface and RI and .R are the principal radii of
curvature of the middle surface (see fig. 1), Formuk for
the ca.lculationof the quantities a. and R, me cent.flincd in
texts on differential geometry. They arc cohctcc[, together
with other results, in reference 2, which clccds with tlw
theory of homogeneous thin shells.

Statics of face layers,—The face layers me trcwtccl as
thin shells of th.ickrwsst and it is assunmdthat the bend iug
stiflness of these.thk shells about their own middle surfrwc
may be neglected. (This,. of course, means thn.t no loccd
buckling phenomena me considered in tlm present work.)
Because of this neglect from now on they will be designated
as face membranes.

The middle surfaces of the face membranes evidently arc
given with reference to the three-dimensional systcm of

. .
curvilinear coordinates bj ~=; (h+t) and ~= —~ (h+ t).

-.
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/

FICCREl.—E1ementof mmposihrsheflrshowingcoordinatesand Wnenssrss.

From equation (1) it follows that the linear element on the
middIe surfaces of the face membranes is given by

‘s’=”’2(1+%)’’’2+”’’(1+%)‘a’ ‘2)
The components of external load intensity on the upper

and lower membranes are designated by pl~, p~~,~ d quand
by pl r, ~Ar, and qz, respectively (&-. 2). The core-layer
stresses which act on the upper and lower membranes ara
gken as rlfu, r~fu,and Cruand by T,rr,7-zrl,end mrz,respectively.
Finally, the direct stress resukmts in the upper and lower
face membranes are designated by .iVllu, .%., N& and
.hry.Uand by A’,,l, AT,,,,!N,l,, and AT~,,respectively (fig. 2).

Fn%rxm2.—Elementof cornposiwshe~ showingkxation snd orientationofetressrmmltonts
in facelayersond corefnyerend orientationof extemrd loads.

There are then three equations of force equilibrium for the
elements of each of the two membranes. Writing

(3)

the equations for the upper-face membrane are the foIIowing: 1

a1ua2u[~G%)+~“)
The corresponding equa.tions for the lower-face membrane
are

(7)

(8)

As bending mom~nts and transverse shears are assumed
not to be acting in the individual membranes the moment
equilibrium equations become the s.ym.metryreltitions

(lo) ““

Before analyzing the state of stress in the core layer it is
corrreiiient to see what relations follow horn equations (4)
to (9) for the composite shell.

Statics of composite she!l.-It maybe seen that, in view
of the fact that all face-parallel stresses in the core layer are
@ect ed, the follo~~ expressions for the face-parallel
stress resultants and couples of the composite shell are
obtained:

I Theseareobtninedfromthe correwonr~ eq~tfom of referew 2 with a. chewed to
Q.. and tith stresscoupIesend trenmrseshewstressremfrantsomitted.TOmakeUp for
this omkiou the lowfs on the t~o membmncsme MNIMedto SCtat theii rniddfesnrfeces,
th~ meanstermsof the orderW? me neklected(but not termsof orderh[??l.
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“’=(’+ %w’~+(’-w’”

“’=(l+%)N’’~+(l-%)N’”
‘[(’+%) N’’U-(l-%)N”JI

M,,= ~

“’=w[(’+%)N’’~-(’-%)”l”l

–K =) “~-(’-%)~’”l
M,,=h;t l+h+t N

‘[(l+%) N’’~-(’-%)”l”l
Mzs= ~

(13)

(14)

(15)

(16)

(17)

(18)

In the same way the following expressions are obtained
for components of external force and moment intensity:

fl~=(l+%)(l+%)’.~+(’-%)(%)%”’”
(19)

(20)

Further, a load term of the following form will be
encountered:

‘=$[(’+%)(l+%):-(l-%)(’-%)“1
(22)

which bears a relation to equation (2o) similar to that which
equation (21) bears to equation (19). This last term would
represent, for a homogeneous shell, the average transverse
normal stress at any station of the shell, assuming that the
~oads gu and gl alone are responsible for this stress. For a
homogeneous isotropic shell this term is of no bportance.
For a sandwich-type shell, as wiUbe seen, it may somii%mes
be of importance. -.

In order to obtain force and.moment equilibrium equations
for the composite shell the face-membrane equilibrium
equations (4) to (9) are combined suitably. Adding equa-
tions (4) and (7), and (5) and (8), respectively, the two equi-
J.ibriumequations for the force components parallel to the
middle surface of the shell are obtained. In order to reduce.
them to known form (see reference 2) the following relations
are used between the core-layer-surface shear stresses ~~r~
and ~arland the transverse shear stress rwdtants Q and Q,.

(l+%)(l+%)””’’’-(l-%)(l-%)””’’=-%
(23)

%[(l+%)(l+%)’fl’~+(l-%)(l-%)’”’’l=Q’
(24)

Equations (23) and (24) will subsequently be shown to be
in agreement with the usual definition for the transverse
shear stress resultants by consideration of the stress distri-
bution of the core layer.

With equations (23) and (24), there are obtained by com-
bination of equations (4) md (7), and (5) and (8)—crmrying
out addition as welI as subt.raction—t.he following four
equations: .

Two further equations are obtained by aclding ml sub.
tra.cting,respectively, equations (6) and (9). Adding equa-
tions (6) and (9) and taking account of equations (11), (14),
and (20), there follows:

“’”’[(%+%)-’+(l+%)(l+%)”’1-

(l-%(l-%)”’’l=O
(29)

In order that this reduces to the correct equation of trtms-
verse force equilibrium as given in reference 2, one must have

Equation

-“’4(1+%)(1+%)”’=

(4?!)(’-%2”’’1=%+% ’30)

(30), just as equations (23) ancl (24), can figain bc
ve%ed independently by consideration of the state of stress
ti the core layer. On the basis of equation (30), cquat.ion
(29) is written in the form

– w-a’a’(%+%’)+a’a’~=o ‘31)”
baaQl+k Q2

2J&

The last equation, use of which is requirccl for the srmd-
with-t ype shell and which has not previously been given,
is obtained by subtracting equation (9) from cquntion (6). -
Taking account of equations (15), (18), and (22), there
results

%(%+%)-2”’”’s+”’”’[(’+%)(’+%)”’.+

(l-%) (l-%)”’’l=O
(32)
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Provisionally, there is -wcitten

and it will subsequent~y be show-n that
value of Urak the middle surface of the
equations (33) and (32) yields

(33)

Utrrsrepresents the
shelL Combining

++t(%+%)-’=o
(34)*

Equation” (34) has no relation to the sixth equation of
equilibrium for an element of the shell which expresses the
condition of moment equilibrium about the normal to the
midclIe surface. That equation which, as is known, is a-n
identity when resultants and couples are espressed in terms
of stresses does not occur in the present derivations, or
rather it is contained in equations (12), (13), (16), and (17),
which give e.xpl.icitlythe slight differences behveen i%~~and
N,l, and Ml, and Ml.

Stress distribution in core layer.—In order to verify
independently equations (23), (24), and (30), as well as for
the subsequent. derivation of appropria-te stress-strain rela-
tions, it is necessary to determine the distribution of stress
in the core layer.

Assuming that the components of stress al, az, and 712 in

the core which -would contribute to stress resultants and
couples of the composite shell are of negligible importance,2
these components of stress may be set equal to zero and
only the components of transverse shear stress and t.rane-
verse normal stress rlc, rzr, and Urmay be retained. The
differential equations of equilibrium for these three remain-
ing components of stress in the system of curvilinear coordi-
nates defied by equation (1) are obtained, from the general
form of these differential equations in reference 3, in the
foIiowing form:

Ho+a’”w’’’ l=”
(35)

(36)

$[a’a’(’+i)(’++) ”’l++[”’(’+i)’”l+

%[”’(l+W=”
(37)

The values of the three stress components at the middle
surface (~=0) are designated by the subscript n-t. Integra-
tion of equations (35) to (37) then gives

: It isfot th~ purposethat the order-of-magnituderelationhE%ltEK<Iisasumed.

(38)

(39]

The transverse shear stress resuhmts. Q, and Q2 are
obtained from equations (38) and (39) in the form

(41)

The integration must.be extended over the thickness of the
core layer and also over half the thickness of the face layers,
in accorcla.nce -with the prior assumption t-hat the stresses
T.rU,r.fl, UrU,and Urlmay be taken to act at the middIc
surfaces of the respective face membranes.

Now, as intended, the proof is carried out of equations
(23), (24), and (30), which were used to obtain the difler.
ential equations for the composite shelI.

To verify equation (2-3), from equations (38) and (39)
for the left-hand side of equation (23), the following equa-
tion is obtained:

and thk, in conjunction with equation (4I), -reties equation
(23).

To verify equation (24) in the same manner, from equa-
tions (38] and (39) for the left side of equation (24), the
folloving equation k obtained:

and this, in conjunction with equation (41), verifies equa-
t:ion (24).

To verify equation (3o), equation (40) is used to -mite for
the Ieft side of equation (30)

and this, in conjunction with equation (41), verifies equa-
tion (30).

The section on the stress distribution in the core layer is
concIuded b-y listing the form which equations (38) to (40)
for the stresses in the core layers assume for “thin”, shells,
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that is, for sheUs for which h/R<<l. From equations (38)
and (39), in conjunction with equation (41), it follows that

(42)*

l?rom equation (40), in conjunction with equation (41), it
follows that

r
(

ac.MQl+h Q2aIc2.3q=cqoqqm-— — —
h+t b.g, m!2 )

(43a)

It is necessary to note for some of the following considera-
tions that, in view of equation (31), instead of equation (43a)
there may be written

(43b)*

It is seen that in this approximation the transverse shear
stresses are uniform across the thickness of the core layer,
while the transverse normal stress is composed of two terms,
one uniform across the thickness and the other varying
linearly across the thickness.

No further calculations are needed with reference to the
state of stress in the composite shell. The next step-is to
complete the system of differential equations for stress re-
sultmits and couples by deriving an appropriate system of
stress-strainrelations.

STRAIN ENERGY OF SANDWICH-TYPE SHELL

In calculating the strain energy of face membranes”and
core layer it is assumed that both are isotropic and elastic,
with elastic constants .Efj Vf= V, G’f=EJ2 (1+ v) and -i%,vC,
G.=E,/2 (1+ v,). Poisson’s ratio for the face membranes is
written without a subscript, because, in view of the assumed
stressdistribution, there is no explicit occurrence of Poisson’s
ratio ~. for the core layer.

The strain energy for the composite shell is the sum of the
strain energies for the face membranes and for the core layer

.
rI=l-I,+rI, (44)

For the. purpose of obtaining stress-strain relations, both
Hf and & are expressed in terms of stresses rather than in
terms of strains.-

Strainenergy of face layers.—Considering that the element
of area on the middle surfaces of the membranes is of the

lL+t d&d& and tihat the stresses
‘“’m a@@%)(l%R)
in the membranes are the stress resultants divided by the
membrane thickness t,_there is obtained, from well-known
principles, the following relation:

SS
*f [ivll.2+N22i2Hf=: , –2VN,,1,A7’2,,,+2(1 +v)N,2.q x

‘(l+%)(’+%)”’”’d’’”Z+

(’-%)(’-a’d’d’zd’z (45)

Equation (45) is transformed into a.nexpression containing
stressresultants and couples of the composite shell by mems
of equations (11) to (18) which leacl to the relations

2(1+%)N’’~=N’’++t3”l

}

(46)

2(1–~)N,,,=N1,–& M,,
\

with corresponding formuh for iVjZ and iVzz, Note thllt
equations (46) ancl corresponding equations can be used to
calculate the stresses in the two difhrent face membmncs,
once stress resultants and coupks in the composite shell me
known.

In what folIows attention will be restricted to cases in which
h/R<<l.. Then, with the two constants & and D* defined by

C*=2tE1
)

D*=+t(h+t)2El
~

(47)

the following expression for I_Ifis obtainecl:

~f=; Ss{&[N#+N&21AM?22+ 2(1+ W1221 +

&l&w122’-
1

2vallLa122+2(l+v)fiIl+] a@d&d& (4S]*

It may be remarked that equation (4S) could have been
given directly, by analogy with known results for the
isotropic homogeneous shel

Strain energy of core layer.—With the stresses al, Uz,and
rlz assumed to vanish, there results for the strain energy of
the core layer

(49)

Again the terms ~IR compared with unity are neglected and,
consistent with this neglect, the values of the stresses~nrand
at are taken from equations (42) and (43).

The value of at may b.e chosen from either equation (43a)
or equation (43b). The form of the resul!s depends some-

what on which of the two equations is selectc.cl,in t,l]e sense
that the meaning of the deform t,ion quantities which arc
to be determined depends on which of the two equations is
taken. This question is decided in the following mtmncr:
As all resultants and couples enter the expression for the
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strain energy only as themselves and not in differentiated stress resultants and couples from the e.spression for the
form, except when equation (43a.)is used, the selection of equa- strain energy II.
tion (43b) for aris proposed, thereby exchding derivatives of Introducing then equation (43b) into equation (49) yields

II.=+ LIT{Q,’+ Q22 1 (
2

)1}(W) VL+ES [“f”–&t *+*–!Z
d~aLazd&d&

The integration with respect-to fis cmrieclout and equation (50) becomes

It was to be expected that the terms containii the
modulus of rigidity d. would occur in the foregoing form.
The contribution of the present report up to this point,
besides giving the new equation (34) for Crm,is thought to
be t-he determination of the form in which t-he effect of
transverse normal stress deformability manifests itself in
the strain energy of the sanchrich shell.

STRESS-STRAIN” RELATIO!SS FOR COMPOSITE SHELL

b what. follows a system of stress-strain relations for the
composite shell is obtained by the use of Castiglkmo’s theorem
of minimum comp~ementary energy. The manner in which
the theorem is used here appears to have been employed
first by Trefftz (reference 4-) for the purpose of avoiding
geometrical considerations in the deri-mtion of t-he stress-
strain relations for thin homogeneous sheUs -with small
deformations, without consideration of the effects of tra.ns-
-reraeshear and normal stress deformation.

Assuming for the present purpose that- edI boundary
conditions for the shell under consideration are stress con-
ditions, the theorem consists in the statement that among
all statically correct states of stress the actudy occurring
state of stress makes the strain energy of the system a.
minimum. In the application of the theorem the fact is
t&en into account. that stat.icaUy correct states of stress
only are to be compared, by means of the Lagrangkm

(50)

(5 1)*

multiplier method. Before mhimking II an integral is
added to it which contains the six equilibrium equations
(25) to (28), (31), and (34), each of the six equations multi-
plied by a Lagrangian multiplier. Ittcan then be shown, by
using Castigliano’s theorem with prescribed boundary
displacements instead of with prescribed boundary stresses,
that each of the six multipliers has the meaning of one of
the displacement quantities -whichoccur h the shell problem?

With the foregoing understanding of the meaning of the
multipliers, the multiplier of equation (225)is designated by
ti.l; that of equation (26), by Uq; that of equation (27), by
f?,; that of equation (28), by p,; that of equation (31), by w;
and fina~y that. of equation (34), by k. It is known that
til, -uZ,and w represent the effective components of displace-
ment ii the &, :2, and ~ directions, respectively. l?urther,
it is knovm that 131and B2represent the ar@es through -which
the normal to the middle surface of the shell turns toward
the & and & curves, respectively. There is no immediate
simple geometrical interpretation for k and, while such inter-
pretation in terms of an average trans~erse normal strain
might be deducecl herein, k is considered as an auxiliary
variable presently to be eliminatecl. .

Combining now equations (44), (48), (51), and (25) to (28),
(31), and (34) in the manner indicated, the followirg -raria-

.—

tional equation resuIts:

:2HJG:+W
K[a’~’+*(%+%-’Yl) a’a’d’’d”+

‘JJ{”’[W+*+’’1’%-N’2 R+”’”’(::+’’)I+
u,, &Y2A~,2aa!p?vli,

L
[ — —~N’’%-N’l%+a’a’(~:+’’)l+hg, + i3&

[
aqull ~acYJf2L,

81 –ag,
acq ha.,

— TM12 ——M22 —-+ C21cw(m—
h& b& a& QJ]+

192
aa,M,, ,

[

aalxp ~ ~1,1 *2

a& T a& “ - agl 1
—Mll ~+ CY1Cq(nt2—QJ +

~; A@, ~ ba1Q2

[ (

Nl, iv>,—-—
b~, ah )1a’”’ x+ R2 * +

[
k fqm+

H%+%w’’d”=o
(52)

~For thespeckdexe of theflatp!kkteth~ hasbeencmriedout esplici~lyin refereneeL For the m..eof the homogeneoussheff,without efiect of tran.werseshesr rm.inormalstressdefor-
mation,the proofhasbeengiren in reference4. The prooffor themoregemrolcrt~ewhich ishereconsideredis not inchrdedss it dws not offersny cleoreriosightinto theproblemsnd tends
tolengthenthe onakrtimldiscussion.
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The variations in equation (52) are carried out and deriv~ it has been assumed that all stresses me prescribed at the
tives of variations in the double integral are eliminated by boundary and therefore their variations vanish at the bound-
integration by parts. The line integrals along the boundary a.~.
which occur due to this integration by parts vanish, because The resultant variational equation is

JS{’NII[N11~~N22-:%-– (Nll N22

)1
& g,–g+l::;j, @~-cl +

~N22 N22– v~H ~ ~s ~1 ~~z

[
— ‘–~+i~]~, ($$+~-~)]+Q* –~ ~–a,a, ~g,

[

2(1+v)N12 1 ~+ UI &Y1 1 &.Lz
wla Q*

U2 b az— —._ _- -+——
1

+—z btz CY1C%2btz al ?ltl 04C4agl

As aI1nine variations in equation (53) are independent of
each other, it follows that the contents of all nine brackets in
equation (53) must vanish separately. Thus the following
nine stress-strain relations are obtained for the sandwich
shell, indicating with an asterisk those which appear in fired
form,

(54).

M11-vM2Z 1 2@,+ 13S &Y, k 1.——
D*

———— (57)
al 3& cqaz twg cqq (h+t)l?l ““

(60)*

lTj-~ kl—=— —
E, alcq (h+ t)

(53)

(61)*

(62)

It may be verified that the meaning of the quantities u1, UZ,
w, /%,and I%is as has been iutlcated by comparing equations
(54) to (61) with the corresponding equations of refercncc 2
for the homogeneous shell with E,=@.= co.

The system of equations (54) to (62) maybe brought into
a slightIy more concise form as follows: Define the quantities
hl, &, and AIZby

1 (h+t)t E~
hl=~~~

1

(63)

and eliminate k from equations (57) and (58) by means of
equation (62) and the equiIibriuxn equation (34). Rct~in
equations (56) and (59) to (61) in their original form and
write for equations (54) a.ncl(55)

(l+i’1)Nl’-(’-1’)N2N=c*(i%+
(64)*

.
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(65)*

Equations (57j and (58) become, since accord~~ to equation

(47) ~*/(h +t) 17c= (}f)t(h-l-t)Er/Ec,

(66) *

(6Tj*

With these last transformations there is obtained a system
of equations vrbich is formally equimdent to the corresponcl-
~g system of equa&m for tie homogeneous shell. The 5
equilibrium equations (25) to (28) and (31) and the 8 stress-
strain relations (56], (59), (60), (61), ancl (64) to (67) are
used for the determination of 13 quantities: Fi-re stress
resultants NII, ATZ, N12, %, and Q,; three stress couples
I& JIM, and J&; and fire displacements and changes of
slope til, U2,w, I%,sncl fk. The quant,ity rr~ which occurs
in the si~h equihbrium equation (equation (34)) may be
determined directly, once the shell. bendicg a.nclstretding
problem has been sol-red.

It, is seen that the eflect of transverse shear cleformation
enters equations (60) and (61) only ancl that, when Gc= CCI,
these equations give the -dues of the known theory of
homogeneous sheIIs without transverse shear clefornmtion
(references 2,3., and 4).

The effect of transverse normal stress defomnation enters
equations (64) to (67) only. It is seen that it is, in part,
responsible for the occurrence of apparent st.iflnessfactors
&/(1 +const. k) and 11*/(1-!-const. X). Thus, accord@ to
equation (63), the effect of fite E. is to make the shell more
flexible in bending and stretching than it would be with
EC= co. This effect, however, is present only in cur-red
structures and not in plates ancl straight beams, as the
quantities k have one or both of the racliiof curvature in the
clenominator. A further effect of iinite E. is occurrence of
t.hcexternal load terms q and s in the stress-strain relations.
Both these effects represent, roughly spea.~mg,what happens
to the shape of an element of the composite shell if the length
of the core fibers in transverse direction is changed, viit,hout
any stretching or compressing of the face-membrane ek-
ments.

Having deri-red the general system of equations for the
small bendirg and stretthing of sandwich-type sheik, it
remains to apply these equa,t.ionsto specific problems -which
may be of interest and to determine the quantitative effect.
of the terms which are characteristic of the sandwich-type
shelI. Some of this -work is done in part 11 of the present
report, which follows.

It. may be stated once more that for these specific applica-
tions the five equilibrium equations (25) to (28) ancl (31) and
the eight stress-strain relations (56), (59), (60), (61], and
(64) to (67) are used.

U—APPLICATIONSOF GENERALTHEORY

FIATPLATES

The problem of the flat plate is considered fist in order
to show that the results of reference 1 are contained in the
present results and in order to solve some problems in the
theory of plates which have not been solved in reference 1.

Rectangular plates.—~sing notation which is customary
in p~ate theory there is set

&=x ~,=y CYl=az=l R,= R,= cu

U.l=u JU2=0 191=tL l%=P,

Nil=.v. N1z= NzY .N,,=ll, Q,= Q.

Q,= Q. 2$,,=31. M,,=31W MY.=31U

pl=pz p2=PY ml= m= m?= “my

(6S)

The equilibrium equations (25) to (28) ancl (31) become

(69) -

2(1+- V)MW=D* (%+2)

(70)

), (61), a.ncl (64)

(71)

(73)

As in the small-deflection theory .of homogeneous plat’es,
the equations for stretching (equations (69) anc~ (71)) are
independent of the remaining equations for transverse bend-
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ing. Equations (69) and (71) for the stretching are not
affected by the elastic properties of the core layer.

Equations (7o), (72), and (73) have been treated in refer-
ence 1 by means of a stress function ~, which, together with
the deflection W, was taken as one of two basic variables.
In what follows an alternate treatment is given, in which the
problem is reduced to three simultaneous equations for the
quantities j3z,13v,and w. On the basis of these three simul-
taneous equations a. problem not considered in reference 1
is treated, namely, the bending of a rectangular plate which
is simply supported on all four edges. Tliis same prob~em
has also been solved by Donnell by a method which differs
from the one employed here. (See reference 5 where the
case of the homogeneous plate is considered.)

To reduce equations (70)., (72), and (73) to three sinml-
taneous equations for P=, PV,and w, first a quantity w is
de-finedby

a=$$+~

Introducing equation (72) into the first of
view of equation (74), theie is obtained

co+V2W= –g/(h +t).G.

-. (74)

equations (70), in

(75)

where V2 = b2/bx2+~2/@2.

~ext, Q=,M,, and M.v are taken from equatiois (72) and (73)
and the result is substituted in the second of equations (70).
This gives, after slight transformations,

[
~ vg~z—qh+t)acpz +: :’v
l+V 1——2(h+t)G.w + %=0

(76)

In an mudogous manner tho foIlowing further equation is
obtained:

(77)

In order to solve equations (75) to (77) two equations are
next obtained involtig w and w ordy. Differentiating
equation (76) with respect to x and equation (77) with respect
toy and adding the two resultant equations, in tiew of equa-
tion (74), give

and, making use of equation (75),

““=-+[’+%$+%)1 ’78)

The following procedure may now be cmricd out: (a)
solve equation (78) for u, (b) with this value of u solve cqurt-
tion (75) for w, (c) substitute w ancl w in equfltions (76) and
(77) and solve for L?=ancl p,, and (cl) elimirmtc cxtrmeous
terms in 13=and & by considering equtition (74).

Before deriving the solution of a problem aIong these lines,
the exp~icit differential equation for w which follows by
combining equations (75) and (78) may bc giwm

‘2V2W=+[’+K%$+%91-*C ‘“)

l$Jotethat the effect of transverse shear occurs on the right
side of the equation only. In orcler to compare the mngni-
tude of the g terms on the right of cquat,ion (79), assume tlmt
relevant changes of g occur over clistanccs of order 1 (where
1mayor may not be a representative diameter of t.hcplnte).
Then, as order-of-magnitude relations, there rcdt

From equations (80), it follows thnt transverseshear cea.scsto
be a secondary effect as soon as 1 is of order fl @~ ‘or of
smaller orcler.

Bending of reot=angular plate with simply supported
edges,—The edges of t,hc plate mo a.ssumcdto be at x=O,a
and y=0,6 and along these edges moments and deflections
are assumed to vanish. Further,

(81)

where
h.= m7r/a

I
(82)

.. p,,=nr/b

“ From equation (78), it follows that

where tifiis a harmonic function. l?utting equation (83) inLo
equatiori (75),

vzw=—~xqm.
[

l/D
Am2+p.z+(h+lt)G, 1

sin ~~x sin Pfly—W,

which is integrated to

where wfiis the general solution of V2W)J= —~k. It is to be the Navier solution for the plate without transvcrso shear
cwpected and may be. shown explicitly that for the plate deformation, the particular integral is the complete solution
which is simply supported all around wh= ufi= O and, as iu of t,heproblem.
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Equation (84) ma-ybe re-writtenin the more e.splicit.fo~

493

(85)

When Gc= w, equation (85) reduces to A’avier’s solution shear deformation. On the basis of equation (85), there.may
W3-. Equa.t.~on(85) E more readiIy interpreted by means of be obtained the following equation (86),
t-he ratio I@.o.v of deflection with and without transverse r

Dv%l>-
w

W.V–(h.+t) GG=~–$’~)’E~= $
—=

. :wN- W.V

(86)

Setting %~2(1—#) =5.4 and (EJGc)t(h +t)/a.q=B, equation
(86) takes on a form which contains as a special case Donnell’s
result of equation (18) of reference 5.

For the case of a uniform load intensity g= Constant and
for the ~enter of the plate (z=a./2, y=b/2) equation (86)
becomes

sin .m@ sin n~j%!

-&=l+f
Er (h+t)t’= -mn.~m’+n2(a’/b~] (87)

2 (l —u~Gc az sin mmJ2 sin n T/2
~Y~ ,nn[mz+n’(a’/b312

The ratio of the series is 1.98 when a/b= 1, and the ratio of
the series is 1.11 when a./b= 1/2.

For the case of a concentrated load at the center of the
plate the deflection ratio at the point of load application.
assumes the form

(sin riT/2 sin n7rj2)2

:=1+<
1?, (h.+t)t‘x m2+nz((z2/b~

2 (1–v?G. a2 (sin 7nT/2 sin nT/2)2 ’88)
x~! [rnz+n2(a2/b~]2

Xow it is easily shown that the numerator seriesb equation
(88) does not converge and consequently w/w~= UYin this
case. A more detaiIed consideration shows that in any plate
theory which takes transverse shear deformation into
account the deflection under the point of application of a
concentrated load must.become idm.ite in contrast with ~~hat
happens when transverse shear deformation is not taken into
account. This difference, of course, -ranishes as soon as the
load intensity becomes finite, and then the theo~ with trans-
verse shear deformation taken into account is more accurate
than the theory which does not t.a.keinto account this effect.

For the sake of numerical illustration take again the
square plate (a/b= 1) with uniform load distribution.
According to equation (87), the deflection at the center is
increased because of transv-erseshear by the factor

E, (h +t)tK=l+9.7g7
W.V

(87a)

Take h=l.O inch, t=O.1 inch, a= 10 inches, EJG,=200, and
v= 1/3. Thenl according to equation (87a), wlw~= 1+2.3, so

that in this case the deffect,ionvrit.htransreme shear is more
than three times the deflection when shear deformation in
the core is neiglected.

Returning now to equation (84) for w and equation (83)
for u and substituting these two equations in equations (76)
and (77) in order to determine the changes of slope I%and &
after slight transformations there results

(89)

Equations (89) are remarkable for the reason that they are
not affected by trans~erse shear deforms.bilit.y. According to
equations (73), the same is then true of the bending and
ttisting couples 31,, .31., and 11.,. It is not. easy to see
why, in this statica.JIyindeterminate problem, the maamitude
of the internal forces does not depend on the elastic proper-
ties of the core. The analysis, however, shows that. the
distributions of W., .JIV,and 31.,, and therewith of Q= and
Qu,remain the same as those obtained under the assunipt.ion
that G.= m. In this connection the follovc@ remark may
be made.

Etidently the folIowing three boundary conditions,
W=&f.=BV= O along the edges x=O,a, have been satisfied.
In order that the last. of these three conditions be satisfied
there are necessarily nonvanish@ edge values of the twisting
couples .ll=.. The same is true in the theory without transv-
erse shear deformation, -where, however, no alternative
possibdit-y exists, as in that theory only- the boundmy condi-
tions W=JIZ= O are relevant. For the present system of
equations three boundary conditions must-be formulated for
every plate edge. Thusj it is possible although mathemat-
ically complicated to sol-re the problem of the rectangular
simply supported plate -with the edge condition flV=O
replaced by the condition Jf=Y=O. In that ease, -which wilI
not be pursued here, there evidently will be a distribution of
internal stresseswhich is mo~ed by the effect of tra.nmerse
shear deformation.

t
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Cylindrical bending of plates,—As a further relatively
simple example of application of equations (70), (72), and
(73) problems are considered for which

a( )./by= o

Z)( )/&=d( )/d#=(

Mm= Qu=mv=&=O

Mu= VMX

yI (90)
.

and where consequent]y the problem reduces to the following
system of equations:

M:– ~+ m.= O

Q,=(h+t)G,@z+w’)
1

(91)

Note that in order to obtain the problem of the sandwich
beam from equations (9o) and (91) the only changes which
are necessary amount to setting v=O in equations (91).

To set into evidence the effect of finite values of G. in
equation (91), the following system of equations is deduced
from equation (91):

Dw’v=q+mz’–
Dq,,

(h+t] G,

Dq
lW== – ‘w’’–@q=t)s.

Z@’
“=-Dw’’’-(h+t)Gc+mz

(92)

(93)

(94)

(95)

Solutions to the following problems are listed:
(1) Simply supported plute of span 1 carrying a load

q=qO cos ux/1. Boundary conditions: W(+-1/2)=MJ + 1/2)
= 0.

[

(h+t)t COS?rX/t

1
w=~ 1+L2 G

2 (l– V2)GC 12 (7r/1)’
(96)

Tho factor in brackets may again be written in the form
] +5.4& with P= (EJGJ/[(h+t)t/12], using the notation
suggested in reference 5. As the problem is statically
determinate as far as moment and force are concerned there
is no modification of .11. and Q, due to the finite value of G,.

(2) i%rnply supported plate of span 1 carrying a uniform
load g=gO.

From this there is obtained for the center deflection,

5 $@
‘(0)=3~4 D [

Ef (h+t)t——
1

1+2—— — (98)
a (l —F)GC 12

Ii is seen that the correction factor for the ccntcr dcfkction
is almost the same as that for the cosine load curvo (equ.alien
(96)), the only difference being a change of tlLe.factor
n2/2=4.93 into 24/5=4.80; that is, a reduction of tlm shmr
correction factor by at most 3 percent is present. h’otc
that according to equation (87a) the shear correction fticlor
for the square plate of width a.=1 is more than lm-icc m
large as the shear correction factor for the phte strip of
width 1.

(3) Built-in plate of span 1 carrying a uniform load q=q~.
The boundary conditions me: w(+l/2) =PJ +1/2) =0 (and
not w’(+1/2) =0).

●

‘=%{[(fi)-’]-2[’+(h:fic~2‘“)
From t.hk there follows for the center chdhction,

fl$
[

“E, (h+t)t
w(o) = ~~ 1+24 (1 _#)ac 12

1

-1)

(loo)

Comparison of equations (100) ancl (98) shows that Ior
the built-in plate the effect of transverse shear deformation
is very much more pronounced than it is for the simply
supported plate, a factor 24/5 in the latter casebeing rcplncecl
by a factor 24 in the former case. A somewhat simikw per-
centage increase must take place in going from cqufiiion (W)
for the rectangular plate with all four edges simply supported
to a formula (which has not yet been clcrivccl) for the rcc-
tangu~ar plate with all four edges built in. As a further
result in this problem of t-hebuilt-in plate, by putting cc4un-
tion (99) into equation (93), it is found that the moment
function M. does not contain any terms clcpe.nclingon the
effect of transverse shear cleformation. This ngain is some-
what surprising as in this case it is not possiblc to dctcrminc
the moment function by statics alone. As n problem where
the moment distribution is in fact clependcnt on lhc cflcct
of transverse shear there may be mentioned the.problcm of
the cylindrically bent plute with both cncls built in, which
carries a load q =qlx instead of the loacl qo= go, This
problem also may be SOIVCC1by means of equations (92) to
(95) .

Circularplates; rotational symmetry.—As no cxcunplcs of
solutions of circular sandwich-plate problems lmvc ns yet
been published and as it is of some interest to dctcrminc in
wh~chway the shear correction factors change in going from
a problem for the plate strip to the corresponding problcm
for the circular plate, the equations for wxisymmctricaltrm~s-
verse bending of circular plates are briefly cliscusscd.

Polar coordinates r,8 are introduce.clnnd notution which
is customary in pktte theory is usecl. As a consequcmc of
equations (70), (72), and (73), the following system of cqun-
tions is obtainecl:

drQ,/dr+q=O

]
(101)

drM,/dr-Mo-rQ,+ rm,=O

Q,=(h+OGd(i+dw/dr) (102)

M,- vMu=D *dB,/dr

)’
(103)

Me- VM,=D *&/r
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According to equation (79), the equation for the deflection
wwillbe

(104)

where ‘?= (1/r)d[r d( )/dr]/cZr. Having found w by means
of equation (104), E, may be determined from

and therewith 11, and life are obtained from equations (103].
k the present problem it seems to be somewhat. more

convenient to proceed as follows: Combine equations (101)
and (lo3) to obtain as equation for the change of slope fl,

‘+:[”$4%)1=’-+% ‘10’)

Having P,, 31, and JIQ are found from equation (103) and
Q,, from the second of equations (101),

“f=D(%+:’r)

( )
Mo=D ++ ~

(107)

d 1 dr& + ~T

()
Q,=Dz ~ dr—— (108)

FmaIIy, with this value of Q,, w is found by integrating
equation (102),

() ~ J m.,d,
w =–JAdr+(h+DQGc ~ ‘~~’——

(h+t)Gc
(109)

Deflection of circular plate with built-in edge.—The
bending is now considered of a plate with transverse load
~=%&/~)” and ~th ~r=o- ~iI’st from equation (106),

Attention is restricted to complete plates with no con-
centrated load at the center, and consequently it is necessary
to set ~Z=C3=0 in equation (110). This gives

()Dj%=c, ~+(n+fi&319), ;
*+3

(lloa)
1-

Putting equation (llOa) into equation (109), there resuIts
for the trans-rersedeflection w

[()
D;=– ~ $2+

d ‘“’3 (Y’+”]+(n+4)(?2+2)’ a

D

[ 03

~ n+:

~2(h+t)G, 2“+-- z
(111)

Taking the case of a plate of radius a with buih-in edge,
that is, with the boundary conditions

&(a) =w(a)=O (1 12)

there results

D~’=(n+$;3+2)’[(9’+3-:1 ‘1]3)
and

qna’ (r/4z)’~’– 1 1 (r/a)’– 1.—
{D “= (n+2)’ (?+4}’ –2 n+4 –

(114)

From equation (114) there follows for the deflection a.t the
center of the plate

Consider the following special cases:
(1) Un.@orm load distribution qm=qo. From equation

(115), there follows for the ratio of deflection with and
without transverse shear deformat-ion

w(o) (h+t)t
[w(o)] @c==‘1+8 (l–?)GC a2

(1 16)

Equation (116) may be compared with equation (100) for
the deflection of the inflnke plate strip of width 1with buiIt-in
edges. Setting l=2a., it is seen that, while the transverse
shear correction factor for the strip has a -ralue 6, the corre-
sponding factor for the circ.ula.rplate is 8. This is consistent
with the earlier comparison between the simply supported
strip and the simply supported square plate, except that
there the change is from 4.8 to 9.7.

(2) Linearly increa.s{ng load distribution q=q,rja. From
equation (115), it.follows that

w(o)
.

=1+3
E~ (h+t)t

[w(o)] G==m 3 (l–#)GC a2
(117)

showing that the correction effect is only slightly greater
than in the case of the uniform load distribution.

(3) Load increaainj linearly from edge to center, q=qo+

gl(~la). (ql= –90). From equation (115), it folIoms by
superposition that

4

D ‘(0)=2&~’ [
Ef (h+t)t

1+8 (l– V’)GC a.’ 1
— .

qOa4

[

25 Ef (h+t)t

2X3X25 l+~(l–~G. a’ 1
i

D .w(o)=3;yf50
[

3000 E~ (HW (l~q
1+ 387 (1—#)G. az 1,

Comparing the. factor 3000/387=7.76 which occurs in equa-
tion (118) with the. corresponding factors 8 and 8.33 in
equations (116) and (117) it is seen that, in the foregoing
three problems at least, there is little ditlerence between the
transverse shear stress correction factors in the case of three
difFerent loading conditions for the circular, clamped-edge
plate. The fact that. this agreement should not be ~ected
to hold generally follows again by considering the case of s
point load at the center of the plate, for which the shear
correction factor modd a.ga-inbe infinite.
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The examples of this section should be augmented by the
solution for the circular plate of radius u, which carries a load
distributed uniformly over a smallercircle which is concentric
with the boundary of the plate.

CIRCULARR1~GS

As the simplest example of a curved sandwich structure
there are considered in this section stressesand deformations
of circular rings in their own plane. As was found in the
general developments of part I of this report, in a curved
sandwich structure there will be the effect of both transverse
shear and normal stress deformation. (The effect of trans-
verse shear stress deformation on homogeneous circular rings
has been considered by 13eskinin reference 6.)

There are set for the relevant coordinates and variables

&=a8 al=l ‘

Rl=a -- ulti~

B1=B N,,=N

Q1=Q Mu=M

pl=p ?nl=?n

a( )/W=d( )/ad@=( )’/a

Xl=h =:[(h+t)t/a’] (Ef/E.)

The equilibrium equations (25) to (28), (31),
reduce to the following equations:

N’+Q+ap=O

Q’–N+aq=O }

M’-aQ+am=O

u;.= .s—[i14/(h+t)a] 1

The stress-strain relations (56), (59), (60), (61),
to (67) reduce to the following equations:

(’++ON=+C*[’’+”+WI
Q=(L+OG, [p+: (H]

(’+’)M=9*(”+3 ““

(1 19)

end (34)

(120)

(121)

and (64)

(122)

(123)

(124)

The load terms p, q, m, and s are given, according to
equations (19) to (22), by

‘=(i+%%+(’-%%
‘=(’+9+(’-%)”

‘=W1+%M’-%9’1

“=:[(l+%)~~-(l-Y)~Jl

(125)

Ring sector acted upon by end bending moments.—As a
first problem on circular rings, which illustrates the cffec~ of
transverse. normal stress. deformation, there is taken this
basic case for which, as is known, there must bc the same

stress distribution at all sections 0 = Constant of the ring.
According to equations (120) ancl (121),

iV=Q=O

M =M, 1 (126)

cf~ = —.Mo/(h+ t)cz

Equations (122) to (124) become

Vt+w=o

I
(127)

13+(w’-v)/a=O

(1+x)Mo=D*@/c4 (128)

The significant result of this consideration is contained in
equation (128), which may be written in the d crnate form

Thus, in this case of pure bending the transverse ffexibility
of the core is responsible for a reduction of the bending stifl’-
ness factor D*= (j4)t(h+t)213fwhich is obtained exRctIy when
E.=0 and practically when E, is of the same order of magni-
tude as EP Equation (129) shows that the reduction of D*
is significant whenever EC is so small that the ratio lZ/Er is
of the same order of magnitude as the ratio (h.+t)t/a2.

As a numerica~example take the foIIowing mdues: 1~=0.9
inch, t=O.05 inch, a =20 inches, and Er/E’C=1000, for which

1 (h+t)t E, 1 0.95 X0.05X1000=0 0595
~~~=~x 400 .

indicating a reduction in bending stiffness of about Opcrccnt.
Changing a from 20 to 10 inches changes the eflcct from 6 tO
24 percent. Changing EJE, from 1000 to 2000 incrcascs the
effect from 6 to 12 percent. Altogether it maybe saicl thut
this effect is of noticeable magnitudp for some geometrically
reasonable structureswhen the moduIus ratio ~J?7. is of the

“order 1000 or more. Assuming aluminum face layers with
E~= 107psi, this means that E.= 1,04psi, which is well within
the range of some present-day core-layer materials.

Comparing equation (129) with the earIier formulfis for
the effect of transverse shear stress deformation, for instance
with equation (116) in which a represents the platc radius!
and observing that (?C= (J6)E6, it is seen that the correction
terms are (of the same form, the difference being an appreci-
ably largti numerical factor in the expression reprcsmt ing
the shear effect.

Closed circular ring acted upon by uniform radial load,—
Having rotational symmetry, d/d8=0 and zI=fl=O. Also SCL
p=m=O. The remaining equations permit the determination
of the stresses in the face and core layers in a-way which
depends on the extent to which t-heload is npplied to the



●

SMALL BEND~’G .LXD STRETCELA-G 03’ S&S$~CH-TYPE SHELLS
Q~

outer (upper) ancl inner (Iower) face membranes. IIquat.ion
(12) becomes

AT=aq (130)

From equations (121), it foIIows that

c~m=.s—[ilf/(h+t)a] (13 1)

The stress-strainrelations (122) to (124) gi-re

(132)
and

(133)

.4 Closes circular ring subjected to a uniform radkd load
dist,ribution g is stresseclnot only by a uniform a.sial force
-l”=aq, as would be. e.xpectecl,but in addition is stressed by
a uniform bending moment. Al, t-he magnitude of which is
given by equation (133). The e.xpIanation of this result is
that for a ring with relatively soft core the circumferential
stress distribution depends on the extent. to which the
external radial load is appIied to the tier and outer forces,
respectively. Roughly speaking, for a sufficiently flexible
core hq-er the loacl q. goes predominantly into the outer
face Ia-yer, while the load qz goes predomina.ntIy into the
inner face layer.

Accorcling to equations (46), the stresses in the two face
layers are given by

.h’u=: N+&-f 31-.

X=; A“–&t AI
}

According to equations (130) and (133) and
clefinitionsof D* and k, this may be written

‘T~=X’+%)

“’’=X’-*) }

(134)

in view of the

(13 5)

Combining next @quations (131) and (133], for the trans-
~erse normal stress in the c-orelayer, the foIIotig expression
is obtained:

cl~m=*
i

(136)

For a specific example assume that the radial load is
applied entirely to the inner face of the ring so that gm=O
and, according to equation (125),

.

)}

~=(1 –y g,

(137)

‘=-W-WJ ,

With q and s given by equations (137), equations (135) and
(136) become

‘v~=w-%%?i

‘V’= K1-%TW’

(138)

(139)

1%is seen that the flexibility of the core layer increases the
circumferential stress in the loaded face layer in the ratio
(1+2k)/(1 + ~] and decreases it in t-he unloaded face layer
in the ratio 1/(1 +k), vrhere h is defined by equation (119),
compared with the equal values of these stresses when
EC= CO. .
“ Considering once more the nurmriczd data under the sec-
tion entitlecl “Ring sector acted upon by end bending =
moments, ‘‘ it is found, for instance, that the stress in the
inner face layer may be about 6 or 12, or 24 percent higher
than the corresponding stress ca.lctiated without t.a.kinginto
account the transv&se flesibilit,y of the core layer.

Ring sector acted upon by radial loads g. and ql, uniform
in circumferential direction and with vanishing resuItantg,—
Again it. is assumecl that d( )@9=0, m=p=O and now in
addition that g=O, so that, according to equation (125),
the only non_ranish@ load term iss. Further, it is assumed
that the ends 19=+ a of the I@ sector are free of stress,
that is, .N(+ a) = Q(4 a) =..W(+.CJ=0. The ordinary theory
of circular rings -would then indicate the absence of deforma-
tions in the entire riqg. In the present case there is found
a type of cleformation peculiar to the sanchric.hring, which
may perhaps be compared to the action of a Bourdon gage.

Solving first equations (120) and (121) ancl satisfying the
end conditions of the ring sector,

The stress-st.rah relations (122) to (124) are then

. ~?+~=o

afl+w’-o=O‘1 (141).

&=-s/E,

&sunr@ .s independent
obtained by integration,
AZ, and ~,

, fi=-~d EC + AL

of 6, from equation (141) there is
with constants of integration Al,

(142)
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As, a specific example consider a complete ring, slitted
radially at the section O= r, so that a= m. Prescribe fur-
thermore the symmetry conditions @(O)=~(0) =w(0) = O.
IJnder these conditions there is obtained from equation (142)

E,fl=-so
1

E,v= –as(O–sin 6)

J

(143)

EGw=.as(l –COS O)

From equations (143), it follows that the radial slit, which
is of zero width before the loads gtiand ql me applied, opens
under the action of the loads to a width given by

For a numerical example take a= 10 inches, h= 1inch, t=O.05
inch, EC= 10,000 psi, and gU=20 psi>and obtain

v(— T)—w(T)=O.132 inch (145]

The foregoing t.hreeexa.mples of ring analysis have been
discussed in some detail, because they illustrate relatively
simply the effect of transverse normal stress deformation in
the theory of curved sandwich structures, without involving
at the same time the effect of transverse ehea.r stress
deformation.

Bending of semicircular ring by end shear forces,—A
problem is now considered in which both the m-duesof E,
and GCaffect the result of the analysis. In the equilibrium
equations (120) and (I21) -all external load terms are set
equal to zero and then, by integration and from the boundary
conditions, that is, from

(146)

J
The following expressions for N, ~1, and Q are obtained:

Q=QO sin 6

N= QOCOS9 1 (147)

M=-” a QoCose

The stress-strainrelations (122) to (124) become .

(1+X/3)Qo cos 6=(C*/a)(#+w)

Q, sin @=(h+fjG.[P+(w’– v)/a]1 (148)

–(1 +h)QOa COS 6=(~*/(2)~’

Integration of the last of equations (148) gives

II*9= –a’(l +X)QO sin e (149)

where n constant of integmt.ionhas been eliminated Fy means
of the symmetry condition P(O)= O. Substituting equation
(149) in the second of equations (148),

[

az(l +X)~ (W’– O)=Qo sin @ (h+lt)G,+ D*
1

[ %$%+%)] “5”’
=QOsin6~ 1+2

Simultaneous solution of equation (15o) and t.hc first. of
equations (148) for v and w gives as general expressions for
u and w,

v=A6 cos 8+A1 sin 8+ AZ cos o .

1
(151)

W=AO sin o—(AI+I?) cos 6+AZ sin o

where AI and A2 are arbitrary constants of intcgration and
A and B are found to be

[ —(%+%)+%”(’+$)1
/i_ Qoa3 1+; uy

2R*

[ }‘:(%+%)-g(’+;)] “5’)
~=:;: 1+1 (~+t)t

~As further conditions, it is prescribed that v(O)=ti(7r/2)=0,
which makes A2=AI =0 in equation (151). There mnmins

V= A6COS 6

1
(153)

w= .46 sin 6—B cos @

Of particular interest-are the values of w(7r/2) and w(0),
the first of t,hescgiving the radial deflection of the point of
load application, the second giving the change of radius at
right angles to the applied load. It is found that

(154}

[.
1 c?o~’ ~+; (H2Ww(0)= -.B= —3%

—(2+%)-%+31
(155)

Equations (154) and (155) contain the interesting result
that,,for this problem, transverseshear ancltransversenormal
stress affect the outcome formaLly in nearly the smnc way,
If the generally unimportant termswith D*/a*C* arc omitted,
which amounts to the usual assumption of circumfcrcntinl
inextensibility of the ring, then the el?~cts of finite ZZ,nncl
Gooccur in exactly the same way.

For a numerical example take h=O.9 inch, t=O.05 inch,
a=20 inches, E,/EC= 1000, ancl E~/G,=2000. This gives

~,1 (h+t)t E, 1

–5TE=16.8

The factors in brackets in equations (154) and (155) become

1+~+++~ ( 1
16.8 16.8 1770 1+3 X16,8 )

=1.18

and

, l+~+~–J- ( 1
16.8 16.8 1770 )1+3 X16.8 ‘l”l S
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Thus, in the present example the flexibility of the core is
responsible for an 18-percent increase of deflection-load ratio,
and of this 12 percent is due to transverse shearing and 6
percent to transversenorrmdstress. Compared with thesetmro
effects the effect of circumferential extensibility of the com-
posite ring is seen to be negligible. As a further numerical
illustration, it is noted that reducing the ring radius a horn
20 to Io inches, with idI other data unchanged, changes the
18-percent correction to a 7.2-percent correction.

Bending of complete circular ring under action of two
concentrated radial forces at 8=+ ~/2.—The solution of
t-hisproblem may be obtained by superposition of t-hesolu-
tions for t-hesemicircular ring under the action of end shear
forces QO(equations (146) to (155)) and under the action of
end bending moments Z@ (equations (126) to (129)).

The fist step consists in determining kfo ill terms Of Qo
such that the sum of t-he19’sfrom equations (129) and (149)
assumes the value zero for 6=7/2; that is, the value of the
superimposed bending moment at 6==/2 must make the
tangent to the deflected ring at this point horizontal. Com-
bining equations (129) and (149) in this manner, there is
obtained

or
J10=(2/r)aQo (156)

It, may be noted that equation (156) is a further case of a
statically indeterminate problem where transveme shear and
normal stress flexibility do not affect the internal force and
moment distribution but affect only the state of deforma-
tion of the structure.

Further, the radial cleflections w(T/2) and w(O) due to the
action of 310 are calculated, in order to combine them wit-h
equations (152) and (153). Integrating equations (129) and
(127) with the boundary conditions v(0) =v(m/2) =0, t-here. .
is obtained for the displacements due to Jfo,

( )
D*w= —(1 + A)MOa2 1 —~ cos @

(’-ii

.
D*u =(1 +A)itloa’ “

and, in particular,

(- )1
D*w (0) =(1 +h)MO(zz “~– 1

(157)

> (158). .

()D*w $ = –(1 +X)310a’
.- . J

Combining equations (158) tith equations (154) and (155)
and taking L710from equation (156), there fouows for the
resultant displacements

‘(f)=%{ (:-:)
(l+k)+&+~(@]~

}~(”)=-%~{(:-~)(l+h)+iE’-%(l+$Jll ‘15’)

where A.=- ~ has been put as a further abbreviation.

Equations (159) may be w-gittenin the alternate form

w ; =o.149g
(). {1+’+52’E’+%4‘“0)

‘w(o)=-o 137 Qq3. – ‘+’+365EW+M‘161D {

WKhenX=&=O and when the composite ring is assumed
axifly iuaxtensible, wbic.h amounts to putting D*/a2&=0 in
equations (160) and (161), then equations (160) and (161)
reduce to well-known resnihsof circular-ring analysis.

Comparing equations (160) and (161) for t-hecIosed circular
ring with equations (154) and (155) for the open semicircular
ring, it is noteworthy that for the semicircdar ring h and kG
occur with equal weight, while for the closed circular ring the
influence of & is considerably greater than the influence
of X. Thus, for the closed circular ring the effect of
transverse shear deformation is much more important than
the effect of transverse normal strees deformation, while
for the open semiciicula.r ring both effects occur in a much
more nearly equally important way.

For a numerical example of the use of equations (160) and
(161) take again the values for the numerical example given
in the section entitled “Bending of semicircular r@ by end
shear forces.” This gives for the expressions in braces

l+~+2;65fg+~=l.6916.8 .
and

2X3.65+ 3.65
%&+ 16.8 m=1”50

Thus, while bheeffect of tran.wersestress deformation for the
open circular ring amounted to 18 percent, the corresponding
corrections for the closed r&~ are 69 and 50 percent,
respecti~ely.

The next step in the analysis of sandwich-type clrmdar -
rings wouId be the general solution of the system of equations
(120) to (124) for arbitrary load distributions. This, evident-
ly, is possible and further speci&c exanqies of interest might
be analyzed on the basis of the general solution.

CIRCULAR CYUXDRICAL SHELLS

In this section the general s~tem of equations of part I
of this report is restricted to the equations of the theory of
circular cylindrical shells. The treatment of sandwich-type
shells of tbk kind is shown to be not appreciably more
di.flicult than the analysii without the effect of tmmmerse
shear and normal stress.

As specfic examples, some problems of rotationally sym-
metric deformations are treated. In particular the influence
coefficients are obtained for a semi-infinite shell acted upon
by bending moments and transverse forces at one end of the
semi-infinite shell. ~~th these influence coefficients an
explicit solution is obtained for the problem of the in6uite
circular cyI.indrical shell acted upon by a pressure band of
zero width.
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In the general equations ‘of the problem there are set for
the reIevant coordinates and variables,

‘R,=a

Nz.Z=Nz

Mll =Mo

u~=u

ml= me

p2=pz

(162)

N12=N21=N?e 1W12=M21=1MA J

The equilibrium differential equations (25) to (28), (31),
and (34) become

(163)

(164)

u~m=s
–-””

(165)

The stress-strain relations (56), (59), (60), (61), and (64) to
(67) become, with )u=k,z= 0,1,=(1/2) [(h+t)t/a~(lIJIZJ =X,

()N.– vNe=C* ~
2(1 + v)ivfi=c*

(z+%)

(Qo=(h+t)G, B,+::–:)

Q==’’+’’++%)}

(166)

(167)

(168)

T7hen 6’,=EC= co (and therewith 1=0) equations (163),
(164), (166), (167), and (168) reduce to the known systcm of
equations in which deformations due to transverse stresses
are neglectecl. The solution of the present systbin 01 equa-
tions is not essentialitymore clifiicult than the solution of the
system with, GC=”Ee= w. In particular also here there may
be obtained a. trigonometric double-series solution, as ri
generalization of Na.vier’ssolution for the flat plate (rcfcrcnccs
7and8).

For this trigonometric double-series solut.ion there is set,

(AT=,Ne)=-Z7, (Nz~~,iVuJ sin W09sin nx/i

N.e= EX N~e~mcos mtlcos nx/1

(M=, iMe)=>Y~ (hlz~., Monfi) sin mt)sin nx/1

M=e= ~F, Mzemncos mfl cos nx~l

(109)

(170)

(171)

lThen equations (169) to (171) are substituted in equations
(163) to (168) there remains for every value of m and n m
system of 13 simultaneous equations for the 13 I?ourier
coefficients which occur in equations (170) and (171).

A system of only five simultaneous equations for the five
Fourier coefhients in equation (170) is obtained if first
equations (163) and (164) are reduced to fivo equations for
the five unknowns w, o, u, B., and Po,by means of equations
(166) to (168).

For the present, the task is not carried out of obtfiining the
deformation and internal stress Fouriei coefficients of
equations (170) and (171) in terms of the Fourier cocflkierds
of the load terms in equation (169). Inste.acl,the axisym-
metrical case, to which equations (169) to (171) reduce when
sin rnt?and cos m8are interchanged throughout, and then only
the terms for m= Oare taken, is trerdeclseparrdely.

Axisymme@cal deformation of circular cylindrical shell,—
In equations (163) to (168) set

“ b( )/be=() 21( )/&c=( )’

,NA=Q6=1MOZ=0 1 (172)

V=pe=() i’ne=p6=0
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and then the following system of equations has to be dealt
with:

A:’i-pz=O )
l&’-(N,/(z}+q=oJ

(173)

(174)

Q.=(h+OG.(fIz+W’) (176)

The system of equations (173) to (177) maybe reduced to
two simultaneous equations for 13=and Q., as fo~ows: Ftist,
express 31. in terms of p. by means of equation (175) and
substitute the result in equation (174). From the first of
equations (177), it follows that

M*=* M=+
D*s

(1+k)aE.
(178)

and this, introduced into the second of equ.ations (177), gives

Equation (179) is introduced into the tit of equations (174)
and, restricttig attention to shells of uniform section prop-
erties, there is obtained

,.
(1+x)D* ,,
l+A–IF~Z –Qz=–mz–

vD*~
aEc(l+A—r2

(180)*

To obtain the second of these equations, ~st, introduce
into equation (176) the value of w’ which .foIIows from
equajion (175), giving

Q.
(l)i+t)G.

=pz+$ [( )1+; .?Vu’—VA’TZ’ — CJ~a+~~] (181)

In equation (181), Ar~’ and hr.’ are taken from equation
(173) and, after slight transformations, there is obtained

~l+$)Q{-(~t,G.+’z=-%’’+%)‘182)*
Comparing equations (180) and (182) -withthe c.orrespond-

~u equations without the effect of transverse shear and nor-
mal stress deformation, it is seen that the effect of transverse
normal stress! which is represented by 1, merely somewhat
modifies some of the coefficients of the left sides of the
corresponding system of equations with IZC=co. In con-

trast with this, the effect of finite (JCisto introduce anew-term
into the lefli sides of these equations. This new term may
be of a~preciable importance, as d be sho~.

Having solved equations (180) and (182), .lIz and Jl~ are
obta.inecl from equations (179) ancl (178), respectively; No
follows from equation (173) in the. form

ATO= a-(Q=f+g) (1s3)

and zofollows from equation (175) in the form

w= (a/C*) [(l +h/3)a Q=’+ aq+ VJ pzdx] (184)

The following exa.mple_sdlustrate the use of equations (178)
tO (184).

Infinite circular cyblrical shell with periodic load distri-
bution.—In specialization of equations (169) to (171), set

q=q# sin /lx ‘ .s=.spsin P*

}
(185)

pz=pw Cospz mZ= m.wcos I.LX

W=wp sin .LLr U=up Cos px i3.=& Cos px (186)

By introducing equations (185) to (187) into equations
(180) and (182), two simultaneous equations are obtained
for the amplitudes Q,. and 13zp,as follows:

1
(188}

To simphfg the further discussion, by sett~~ in equation
(188) m.p=SP=pzA=O, there.ir.obtained for.&a.n.dQ%

(189)

The quantity K is .ghn by

where use has been made of the relation p= fi/1. In equation
(190) the term k/3 wilI usually be of little importance. The
other t-m-ovariable terms represent the effect of triwwrerse
shear deformation and of shell curvature, respectively.
lThen the raclius a is so large that P/(h+t)2a2<l, the sheIl
behaves uncler the action of the given load essentially as a
plate strip. The effect of transverse shear “is important as
soon as the term (.2/#) (.P/a2)[t/@ +t)] (E~/Gc] is not small
compared with 1.
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Before evaluating a numericid,example the following fur-
ther formulas which are readily obtained from equations
(179), (183), and (184) are listed:

M.fl=+ K

Nep=aqp(l –K)

~.=f$#[l-(l+$)lrj
(191)

Equations (191) show that in this problem not only, is ihe
deflection increased because of the effect of transverse shear,
and with that the hoop stress resultant No~~but now also an
effect is found on the btin.ding-momentdktribution ild~~,in
the opposite sense. The effect of transverseshear is to reduce
the magnitude of the bending moments in the shell. This
result is in contrast with what was found for the examples
which were worked out in the sections on plate analysis and
circular ring analysis and is therefore of particular sig-
nificance. ‘

Equation (191) for w, may be compared with the corre-
sponding expression for a simply supported plate strip of
width 1,with sinusoidal load. The result for this case must
follow from equation (191) in the limit a+ w and agree with
equation (96), which was previously obtained. To compare
the last of equations (191) with equation (96), the last of
equations (191) is written in the form

Wp= –
1

l-i-h-vz 1 4

()(1 +A)D* z

0

l+ A—U2 1=
+(1 +i)D* ;

(192)

Equation (192) reduces to the equivalent of equation (96)
ifinita~m.

From a comparison of equations ‘(192) and (96), it is
further concluded that the correction due $6 transverse shear
is greatest in this case when a= w, so that, in this case, the
curvature of the shell tends to reduce the additional shear
deformation, below the value obtained for the simply sup-
ported plate strip.

For a fist numerical example, take h=l inch, t=O.05
inch, a= 10 inches, 1=20 inches, EIIG.= 200, EJEG= 100,

1 1.05X0.05
v=l/3, and h=g

100
-–--100=0.025, The factor K of

equation (190) becomes

=(1+0 .008+ 3.86+ 54.5) -’=0.01685

while without transverse shear and normal stressdeformation

(@GC=~c=m=(~+54,5)-1=0.0180

The correction in this case amounts to about 6 percent.
For a second numerical example, change the above

moduli ratios to Ef/@c=2000, El/E,= 1000. This gives

K=(1+0.08+38.6+ 54.5) =O.O1O6 ●

instead of K= 0.01685. The correction in this case amounts
to 0.0180–0.0106

X100 =70 percent. Thus again a case is
0,0106

found where omission of the effect of transverse shear defor-
mation would give residts which could not, bc used. How-
ever, it is noted that the effect of transverse normal stress
deformation is quite small and may here safcly be neglectml.

If the foregoing values of K are introduced into equations
(191), it is seen that the percentage corrections apply to the
bending-moment value directly but that for hoop tension
and radial deflection the corrections arc very small indeed.
In fact, in order that there be appreciable corrections due
to transverse shear on hoop tension and radial deflection, it
is necessary that the half wave le.ngt,hof the sinusoidal load
g be so small that K is at Ieast of magnitude 0.25 or more.

A case of approximately this kincl is obtainecl if the half
wave length t is changed from 20 to 10 inches and the moduli
ratios are again taken as Ef/EC= 100, El/O.= 200. Then,

K=(l+0.008+0.965 +3.41 )-’=0.1865

whereas

(~iC.ce..=(l+3.41) -’=0,227

The percentage change of K and therewith of ikf. is slightly
more than 19. The percentage change of Nu and w is about
4.5.

The foregoing numerical examples show that the effect.
of transverse shear may be significant in cylindrical srmd-
with-shell analysis and that moreover its magnitude will
not in general be predictable by the analysis of an equivrdcnt,
@t-plate or straight-beam problem.

For the infinite ciicular cylindrical shell with Iond g=
g.cos PX the essential results are given by equations (190)
and (191). These results may be extended directly to the
loading condition

q=~qn Cosp.x

I
(193)

p.=nu/l

By superposition, from equation (191) the following formulas
are obtained:

Mz=~@JLL.9K. Cos IJSX

No= a~gm(l —KJ cos I.L%X “1 (194)

w= (a2/C*)~q~ [1—(1+ h/3)K~] cos g~cc

The values of K. are obtained from the formula

[

Pt E~ 4(l+k–v7 14 1‘“=1‘$+A(h+t)a’m+(1+X)7r4n4(h+t)’a’
“ (195) “
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Having the sohtion for the infinite shell with periodic load
distribution, it will be only necessary to add to this the gen-
eral solution of the diRerent.ia.Iequations without- external
load terms, in order to obtain the complete solution for amy
edge condition of the a.xieymmetically stressed circular
cylindrical shell of finite length. This additional solution
will now be obtained.

Finite circular cylindrical shell acted upon by edge mo-
ments and forces.—To solve equations (180) and (182)
with right-hand sides equal to zero, equation (182) is differ-
entiated twice and /3=” is substituted from equation (180).
This gives

or
Q=”-? ml’Q;’+4m2’Q==0 (196)

where

(197b)

The auxiliary equation corresponding to equation (196) is

r4—27nl%*+4m24=o (198a)

or
rz= m12+ ~lm14-4 mz~ (198b)

The solution of equation (196) occurs in two dillerent forms,
depending on whether # of equation (198b) is real or not.
According to equations (197) and (198b), # is complex as
~ong as

To Arify this condition, neglect X (which is of very little
iruporttmcehere) and equation (199a) then becomes

(199b)

When equation (199) holds, a quantity k may be defied by

ancl the four roots of the characteristic equation are k, 1, —k,
and —Z, -wherea bar indicates the takng of conjugates. The
solution of equation (196) may be written

Where equation (199) does not hold, -whichis the case for
very smti values of @JEf only, all four roots of equation
(198a) are real and of the form

k1=Jm12+ ~1m14-4mzz
1

kz=–k, I
(202)

kg= –k, J

and the solut.ion of equation (196) can be taken in the form

Before a~plying either solution to a.specific problem, there
are noted the folIowing rela.tions-whichfollow from equation
(200) :

7rZ=lk[2=2mz2

1
(204)

k+~= @X1m?+ 2mZz

Semi-infinite shell acted upon by edge bending moment
and shear force,—The following boundary conditions hold:

(205)

Q.(0)=Q, )
while for z= m these same quantities vanish. (For the same
problem without the effect of tranmerse shear and normal
stress, see reference 9.)

Of particula.r interest in this solution are the values of
deflection w(O) and change of slope P=(O)at the section vdlere
the loads JIOand QOare applied.A

Taking first t-hecase E,/G.~2a/t for which equation (201)
applies, it is seen that the conditions at infinity require that

C,= E2=0 (206)
so that

The values of P= may be obtained by integration from
equation (180) in the form

(208)

where two constants of integration have been discarded to
satisfy again the conditions at ~lt y.

With equations (20”7)and (208) there is obtained from the
boundary conditions (equations (205)) that

C,+~,=Qo I (209)

(al/k)+ (Z/l) =–M,

4Without transverseshearand normalstressdeformationthesereIationsare

zs(0)=&[~o.;/~Qo]

f.%@=lg.[Qo+S.Mo]

inagreementwithequations(236)of reference9,wherethehomogeneohsheIlis sum,idered.
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This determines C, and ~1 in the form

(210)

Equation (210) is introduced into equation (208) and there
is obtained as the first of two “inf@nce coefficient” formulas

(1+W* o)=_& [Qo+(k+z)lwo]
l+h-,’~’(

(211)

The second of these formulas follows from equations (184),
(207), and (210) in the form

c’ w(o)

[ 1
— —=– lkl’Mo+(k+~Q,
1+ A/3 a2

(21 2)

Equations (211) and (212) may be written in more explicit
form, using equations (204) and (197). The results are

/s=(0)= –—s d(1+k/3)(1 +X–vq” ““Q,+
@*D* l+h [

id
4C* l+h —vz Q*/a’G, 1m (l+A)(l+k/3) +(h+t)(l +x/3)”o ‘2 13)

i

(l+ A/3)(l+A–v’)Mo_w(o)=———&=* l+A

$(l+;)~J= C*/a’G.
a2D* (1 i~~l—+v;/3)+ (h+t)(l+ k/3)‘o

(214)

Neglecting the gen.eralIysmall effect of finite 17cin equa-
tions (213) and (214), that is, putting A=O in these equa-
tions, there may be written instead

.. --

/%(0)= - ‘$-2 Qo

(215)*

(216)*

Equations (215) and (216) contain the noteworthy fact
that the correction factors for the effect of transverse shear
are independent of the ratio t/h of face-layer thickness to
core thickness. The complete formulas of course must and
do contain the influence of the core thickness h.

It is further noted that, while equations (211) to (216)
have been derived for the case that ?W4<4??IZ4,for which the
complex solution holds, they are also valid, as is readily
shown, -when4mz4> m14.

Comparing equations (213) and (214), and (215) and (216)
with the equations listed in footnote 4 it is seen that: (1)

The effect of transverse shear modifies the deflection CIUCto
Q, and the rotation due to MObut not the other two coc~-
cients, (2) the effect of transverse normal st,rcss cnt.crs all
four coefficients but only in a minor way, and (3) the reci-
procity relation that the deflection due to .l& is the siunc M
the rotation due to Q, is carried over from the theory witho-
ut the extra effects.

For a numerical example the following data me chosen:
t=O.1 inch, h= 1 inch, a=10 inches, EJEC=lOO, IZJ(7,=ZO0,

1 l.l XO. I
p= 1/3;- This makes h=Z ~O. 100=0.055,and, from

equation (197),

1 d0.1X200 =0 426
‘l=s 1.018X1.1 “

d 1–0.09
‘2= 4 100X1.21Xl.018=0m294

Then, according to equation (204),

lk12=0.173 k+~=&j0,182+0.173 =0.84

while wit.houtt transverse shear clcformflt,ion (ml=-O) the
value of k+~= 0.59. According to equations (211) and
(212) ,-the effect of transverse shear in this case is to in-
crease the rotation due to the edge moment in the ratio
0.84/0.59 =1,42, a.neffect of 42 percent. The same incnmsc
is found for the deflection due to the edge shmr force. Ro-
tation due to the shear force and cleflcction due to the
moments are practica~y unchanged. Likewise, the eflecL
of transverse normal stress in this case is of negligible
importance.

As a further numerical example there is chosen t=O.05
inch, h= 1 inch, a=20 inches, E~/Ec= 1000, Er/Ge=2000.

1 1.05X0.05
This makes A=z 400 1000=0.065, and, from equa-

tion (197),

4

—
1 0.05

‘I=m 1.022 xl.05
2000=0.483

From equation (204) then

lk12=0.095 k+~=fi ~0.234+0.095=0.82

while without transverse shear deformation (ml=O) t.ho
value of ii+~= 0.44. Thus the cflect in this case is to in-
crease:edge rotation due to edge moment and eclgc cleflw-
tion due to edge shear force in the ratio 0.82/0.44=1.87, an
effect of 87percent.

Infinite circular cylindrical shell acted upon by transverse
line load,—Calcula,tion is rest.ricteclto the cktcrminrttion of
cleflectionand bending moment at the section x= Owhere the
line load of intensity 2Q0is assumed to act. The result of
the foregoing paragraph may be usecl as follows. Consider
the. infinite shell cut in two parts at the section x=O and
assume..a bending moment AIOof such magnitude timt the
slope P.(O) is zero. According to equation (211), this git”cs
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Qo _ QoM,=-–-=––
J+-~ T12m12+ 4 mzz

(217] I Equations (217) and (218) become, with equations (204) and
(197),

To give these formulas a.somemhat less untiekly appear-
ance, the effect of finite Ec, that is, k= O,may again be neg-
kcted, as is permissible in most cases; and there may be
vcritten

Some numerical examples are as follows.
Taking t=O.1 inch, a= 10 inches, EJGC=200, ancl v= 1/3,

transverse shem deformation reduces JIO to l/y’2.05 times
the -ralue which holds when Gc= m; that is, there is about a
30-percent reduction in 310. At the same time the deflection
under the line load is 3.05/@.05 =2.14 times what it.is when
G.= co; that is, there is an increase of aboui 115 percent in
.U9(())-

Taking t=O.05 inch, a=20 inches, and Er/G,=200, 310 is
decreased by a factor ~;~=0.89, while w(O) is increased by
a factor 1.5/~;Z= 1.34.

Taking t=O.05 inch, a=20 inches, and IZJGC=2000, 310
is decreased by a factor l/%i~= 0.526, while w (0) is
increased by a-factor 6.25/ A13.62=3 .29.

Equation (220) for w(O) may be comparecl with equation
(116) for the circular plate of radius a. This comparison
shows t-hat.,while for the plate both the ratios t/aand (h-l-t)/a
enter into the correction factor, the correction factor for the
cylindrical sheII contains the ratio tla only; that is, tihe
corrections (but not the results) are independent of the ratio
of face-layer thickness to core thickness in this case of a
cylindrical shell.

SPHERICALSHELLS

In conformity tith customary usage, the folIom@ nota-
tion is introduced:

(220)

N22=N8 .V12=iV21=N&e QI=Q+

Q,= Q, M,,=M+ I&=.u? I(223)

M~z=M~.g pl=pQ pz=po

Attention is here restricted to problems with rotational
symmetry and the following relations are used:

q Jm3=o 1 (224)
NQe=Qe=~fea=pe= ?lW=P=fie=O

The cli17erent,ia1equations of equilibrium (25). to (28), (31),
and (34) become, sett~~

q )plj=(i( )/d@=( )’

(sin @ ATQ)’-cos 4 N+sin @ QQ+a sin 4 p4=0 (225)

(sin4 QJ’-sin 4 (N,+Nd+a sin4 g=O (226)

(sin C$MQ)’-GOS 4 kile-a sin @ QQ+a sin @ m@=O

(227)

arn+(M+M)/(h +t)a —s =0 (228)

The stress-s&in relations (56), (59) to (61), and (64) to
(67) become, if there is set in accordance wit-hequation (63)

(229)

(232)
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“+A’M+-’’-’’M’=:(’’’+%)‘233)

)(l+h)Me–(v–k)M# =:(B#cd ++* (234)

There is first given a simple special solution of this system
of equations and then a generalization is obtained of the two
simultaneous equations for Q+and /34which are fundamental
in the theory of homogeneous isotropig sheh.

Uniform stress distribution in a spherical shel.1,-Set in
equations (225) to (234) p~=m~= Oand assume that N+, No,
Q~,M4, and M’o are independent of 1#, From equation (225)
it follows that:

.N6=Ne=N0 Q+=() (235)

From equation (226) it follows then that

No=; aq (236)

and from equation (227) it follows that

M4=Me=M0 . (237)

Equation (228) gives

cr. =s— 2JMo/(h+t)a (238)

In equations (230) and (231) set u=O for reasons of sym-
metry and obtain

(l+HN”=%+’%%’‘23’)
or, with NOfrom equation (236) and X from equation (229),

.>
(C*/u)w=(l/2)(1–v)aq (240)

Equation (232) is identically satisfied when 13@=0, Equa-
tions (233) and (234), hi conjunction with equation (237),
give

1 t(ii+t)z Ef
(1+2X–JMO=:*=5 y Es

or
M,= (h+t)ah

l+2&v8

Then, from equation (238),

(1–$s
‘rm=l+2A—;

(241)

(242)

Equation (242) may be compared with equation (136) for
the circular ring.

According to equation (46), there are obtained from equa-
tions (236) and (241) the following expressions for the stress
resultants in the outer (’(upper”) and inner (’‘lower”) face
layers:

(’+aN~=a(:+l+x-v)
(l-%)N’=+l+KV)

(243)

Comparison of these results with the corresponding rcsulLs
for the circular ring (equations (135)) shows that for given
values of q ands there is a greater difference between NUand
Nl in the spherical shell than there is in the circular ring,
the reason being the relatively larger influence of the s-term
in equation (243).

For a specific example, it is again assumeclthat the radial
load is applied entirely to the inner face so that q,,= O m.d,
according to equations (2o) and (22),

‘=(’-%%
}

(244)

‘=-;(l-%%’

Substitution of equation (244) in equation (243) gives

N’=(%9aql
T-

l+4k —v
1+2X–V

As a numerical example, tahing A=o.0595,
ample given in the section entitled “C1osecl

I (245)

J

as in the ex-
circulm rim

act~d u~on by uniform radial load,” and V= 1/3, it is foun~
that the factor in NI which contains the effect of the core
flexibility is (1+0.36)/(1+0.18)=1.15. Thus, where for the
circuIar ring there was a 6-percent stress increase, there now
is a 15-percent stress increase for the spherical shell.

Reduction of axisymmetrical problem to two simultaneous
equations for Qb,and lb,—The fundamental results of refer-
ence 10 for homogeneous shells may be rea,dily extenclcd to
sandwich shells, as follows:

Equations (225) and (226) are used to express .l~ rmd No
in terms of Q@.

N$=cot @ Q4+Fl(@)

. N,= Q~’+F2(@)

In equations (246) and (247) the functions
given by

(246)

(247)

FI ancl 272arc

#d+ (248)

(249)

Next the displacement components u and w arc expmscd
in terms of Q+, by means of equations (230), (231), (246),
and (247).

Subtraction of equation (231) from equation (230) givoe

: (d-cot @ u)=(l+J (N+–No)

=(1 + v)~–(Q$’–cot # Q+)+F1–I’d
(25 O)
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Equation (IIz?) is integrated to

(c*/cz)u=– (1+ZJ(Q$+.FJ

where Fa is giwm by

s
~L(4J)– ~2(dJ)~~F~=–siu $?s —
:in @

AIYD STRETCHLN-G OF S.AII’DTVTCH-TYPE SEELLS 507

(25 1)

(25 2)

Equations (251) and (252) are introduced into equation
(231) and the following expression is obtained for w:

(c*/cz)w=(l +X13) (cot 4 Q,+ Q,’)+F’4 (253)

-wherel?his given by

(254)

Equations (251) and (253) me introduced into equation
(232) for Q~ and the first of the two simultaneous equtions
for Q@and f?~is obtained in the form

(1+ v)(Q9+FJ 1
which may be rearranged to read

[
(J@’’+Cot @ Q@’– Cot’@ –*+g(h+t) ;1+k~3)] Q’+

,. ~

* B9=~5(@J) (255)

When A=O and Gc= m and -when no external loads are
present, this equation checks tith the first of equations (g)
on page 469 of reference 9.

The function FSis given by

~5=(l+v)F3+F4
l+k,i3—

(Z56)

Introducing the operator

1=( )’+cot @( )’–cot~ @( )

equation @55] may finally ako be written

where

(25 8)

The seconcl of the two simultaneous equations is obtained
somewhat more cLirectlyas follows: write equations (233)
and (234) in the form

(1+,) *] (25 9)

.310=
D*[a

l—?+2k(l+v) [
(1 +x) cot 4 B@+(v–M3#’+

1(l+v)-& (260)

Introcluce equations (259) and (260) into the moment equiE-
brium equation (227) and obtain

1O-EV) # –CZQi.+am+=O (~61)
c

Again, using the operator ~, this maybe mitten in the form

(’-a)
B+– $ [1– &+2k(l + v)]Q, =~@) (.62)*

The function FBis given by

FB=–(l+v)&–;: [1–v%21(l+v)]m~ (263)
c

Equation (262) may be compared with the second of
equations (g) on page 469 of reference 9.

Analysis of edge effect for spherical sheII.-The special
case of no clistributed surface load ancl no concentrated load
at the apex of t-heshell is obtained by setting

F5=F,=0

Following again a known procedure from the theory with-
out transverse stress deformation, there may be set

(264)

with correspombng formuIas for PO’ ancl 19@”. Introduction
of equation (264) into equations (257) and (262) gives

(267)

Assumingthat cot @Ois not large compared with unity 5
and that the effect of the edge loads is restricted to a narrow
edge zone so that IQII<<IQl” \, Ii%I-@cIPI” [, equations (266)
a.ncl(267j may be simplified to

e
Q~’–~’Q’+l+k/3 ‘1=0

(268)*

1%”–KD. [1–-v2+~A(l+v)l Q,=O (269)*

sW-hencot .9>>1 the sheUCstermeda “shtiow” slwIIwhich is not comcideredCnwhat
folklws.
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Equations (268) and (269) show that the influence of ilnite
E&l# O) in the edge-effect problem consists, except in ex-
treme circumstances, in minor modifications of the results
for .?Z,= o. The quantity PIwhich represents the influence
of finite dc and which is approximately

.
2t I?f 1—. _

~’=h+t a. l+h/3
(270)

may, however, in practical cases be large compared with
unity and not of negligible influence on the results.

Equations (268) and (269) may be compared with equa-
tions (180) and (182) for the cylindrical shell. This com-
parison shows that the influence of finite Gcin the edge-effect
problem is of the same nature for the spherical and cylindri-
cal sheIIs. Thus, results of the same quantitative nature
will be obtainable as in the section on cylindrical shellsunder
the headings entitled “Finite circular cylindrical shell acted
upon by edge moments and forces” and “Semi-infinite shell
acted upon by edgi bending moment and shear force.”

This work is not herein carried further to specific applica-
tions. It is apparent that such applications maybe worked
out with hardly any more dificulty than when the effect of
the core deformability is not taken into account.

CONCLUDINGREMARKS

A system of basic equations has been derived for the analy-
sis of small-deflection problems of sandwich-type thin shells.
This system of equations rdduces to lkwe’s theory of thin
shells when the transverse shear and normal stress deforma-
bility of the core of the sandwich is of negligible importance.
The system of basic equations has been applieci to a number
of specific problems from the theory of plates, circular rings,
circular cylindrical shells, and spherical sheIIs, and it has
been found that the effects of both transverseshear and trans-
verse normal stress deformation may be of such magnitude
that an analysis which disregardsthem gives values for deflec-
tions and stresseswhich are appreciably in error.

Numerical calculations have been in the nature of sample
calcuhtions, ihstrating both the use of the equations and
the possible eflects of using them. Examples have been
chosen from the point of view of relative simplicity as well
as with the thought to ihstrate most clearly the conse-
quences of the extra deformations which have been taken
into account . It is unavoidable tha,t, in so doing, some of

the examples may be of little interest for aircraft struct,wd
analysis and that some problems may not have been mmlyzcd
which would have well fitted within the contents of this
report and which at the same time would have been of con-
siderable practical importance,

The general analysishas been restricted by thefollowing two
order-of-magnitude relations: (l)t/h<<l and (2) tEf/hEc>>1,

where t is the face-layer thickness, h is the core-layer thicl~-
ness, li’~ is the elastic modulus of the isotropic face-layer
material, and EC is the elastic modulus in the tmmsvemc
direction of the core-layer material. Therewith it is felt
that very likely nearly aIl situations have been co~’ered in
which the effect of tra.nsvelse core flexibility is of signifi-
cant practical importance. It is evident, however, that if
desired the theory could be extended so as to includ~ cases
where one or both of these two order-of-mae~itudc relations
are not satisfied. The main limitation of the.present analy-
sis is - the omission of all finite-deflection and inst.abilil,y
effects.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY,

Cambridge, Ivfass,,Ikfag26,1947,
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